

 Navigation

 	
 index

 	
 next |

 	Switchboard 1.2.1 documentation

Welcome to Switchboard

Switchboard is a feature flipper library for the Pyramid or Pylons stacks
(including TurboGears). Originally used to selectively roll out changes to the
SourceForge site, the library lets you easily control whether a particular
change (a switch) is active.

You can make switches active for a certain percentage of visitors, all
visitors to a particular host in a cluster, or if a particular string is
present in the query string. Furthermore you can easily create your own
conditions to do fancier things like geo-targeting, specific users, etc.

Having a feature flipper [https://en.wikipedia.org/wiki/Feature_toggle] allows features to be inserted without creating
long-running feature branches. Not having to deal with merge headaches
and messy conflicts means your continuous integration builds run smoother.
Continuous deployment [https://en.wikipedia.org/wiki/Continuous_delivery] is now an option because dangerous code can be hidden
behind a switch. In short, Switchboard turns you into a continuous delivery
ninja [http://code.flickr.net/2009/12/02/flipping-out/].

Documentation

	Upgrading

	Installation
	Pyramid

	Other Frameworks
	Configuration

	Initializing

	The Admin UI

	Middleware

	Caching

	An Example

	Using Switches
	A Word on Workflow

	In Python

	In Views

	In Templates

	In Javascript

	Custom Conditions

	Context Objects

	Testing switches

	Managing switches
	Statuses

	Condition Sets

	Parent-child switches

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Kyle Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Switchboard 1.2.1 documentation

Upgrading

Upgrading from Switchboard 1.2.x or earlier will require a few changes.
Switchboard is now an embeddable WSGI app, which should make integrating it
into apps easier for new users, but existing users will need to change
(simplify) their approach. An overview of what’s changed:

	The get_user and get_request functions have been removed. Inject objects
into the context by extending Switchboard’s middleware. Note that using
switchboard.middleware.SwitchboardMiddleware injects the request into
the context automatically.

	The switchboard.admin.controllers module has been removed; any code
wrapping the CoreAdminController class can be removed.

	Any code implementing routing for Switchboard can be removed.

	Post-request cleanup is now handled by
switchboard.middleware.SwitchboardMiddleware; any custom middleware can
either be simplified or removed entirely.

Please see Other Frameworks for details on the new approach for integrating
Switchboard into another application.

Installation

Install Switchboard and its dependencies using pip:

pip install switchboard

Next, embed Switchboard and its admin UI within the application. The best
approach depends on which application framework is being used.

Pyramid

Switchboard has a pyramid add-on available to make pyramid setup easier:

pip install pyramid_switchboard

Once the dependency is in place, there are several ways to make sure that
pyramid_switchboard is active and Switchboard is up and running. They are
all equivalent.

	Add pyramid_switchboard to the pyramid.includes section of the
application’s main configuration section:

[app:main]
...
pyramid.includes = pyramid_switchboard

	Use the includeme function via config.include:

config.include('pyramid_switchboard')

	Optionally setup Switchboad for easy use in templates.

Once activated, Switchboard’s admin UI is accessible at /_switchboard/ and
switches can now be used in the code.

Other Frameworks

Switchboard is compatible with any application framework that uses WebOb [http://www.webob.org/] as the
underlying request/response library. Even if a plugin/add-on doesn’t exist,
Switchboard can still be setup manually.

Configuration

The first step is to configure switchboard in the application’s config file.
Switchboard has only a handful of settings, none of which are required:

	Key
	Default
	Description

	switchboard.mongo_host
	localhost
	The host for MongoDB.

	switchboard.mongo_port
	27017
	The port for MongoDB.

	switchboard.mongo_db
	switchboard
	The database name.

	switchboard.mongo_collection
	switches
	The collection name.

	switchboard.internal_ips
	
	Comma-delimited list of IPs.

Note that the “switchboard” prefix for the setting keys is also optional; more
on that in Initializing.

Initializing

In the application’s bootstrap or initialization code, pass the settings into
Switchboard’s configure method:

from switchboard import configure
...
configure(settings, nested=True)

If the setting keys are not prefixed with “switchboard” the nested=True
argument can be omitted.

An example configuration that needs nested=True:

switchboard.mongo_host=mongodb.example.org
switchboard.mong_port=27018

And one that does not need nested=True:

mongo_host=mongodb.example.org
mong_port=27018

The Admin UI

The admin UI is a standalone WSGI application; as such it can be embedded as a
subapplication within a larger application. See specific documentation for
Bottle subapplications [http://bottlepy.org/docs/stable/tutorial.html#plugins-and-sub-applications], Django embedding [https://pythonhosted.org/twod.wsgi/embedded-apps.html], or dispatch middleware [http://werkzeug.pocoo.org/docs/latest/middlewares/#werkzeug.wsgi.DispatcherMiddleware] for
any WSGI application.

Warning

Secure Switchboard

Please configure this subapp so that only admins can access it. Switchboard
is a powerful tool and should be adequately secured.

Middleware

The last thing to setup is to handle pre- and post-request tasks. Pre-request
tasks can include adding objects to the context (eliminating the need to add
them explicitly when querying is_active). Post-request tasks include
cleaning up caching data once a request is finished. Switchboard includes
middleware to handle these tasks. Using it out of the box:

from switchboard.middleware import SwitchboardMiddleware
app = SwitchboardMiddleware(app)

It can also be extended for further customization, specifically by implementing
the pre_request method. For example, to add a user object to the context:

from switchboard.middleware import SwitchboardMiddleware

class MyMiddleware(SwitchboardMiddleware):

 def pre_request(self, req):
 user = req['user']
 operator.context['user'] = user

 def post_request(self, req, resp):
 pass # Included just to show what's available.

Caching

By default, switchboard will query all the switches every time one is checked. In
many applications, this may be more mongo queries than desired. Switchboard supports
a cache system, e.g. via memcache:

import pylibmc

memcache_client = pylibmc.Client(['127.0.0.1'])
switchboard.configure(config, cache=memcache_client)

This does require memcache to be running, but limits mongodb queries to only occur
after a switch is changed and the cache is invalidated.

Custom cache objects can be used instead of a memcache client, to implement different caching
techniques.

An Example

Switchboard includes an example [https://github.com/switchboardpy/switchboard/blob/master/example/server.py] application, which is handy both for doing
Switchboard development and for playing around with switches and the admin UI
in a very simple environment. It also provides a look at a working example of
the setup instructions above.

Before running the example application, setup and activate a
virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/].

To run the example application for the first time: make install example.
On subsequent runs make example will suffice.

At this point a very simple application is now running at
http://localhost:8080 and the admin UI is accessible at
http://localhost:8080/_switchboard/. The application has one switch
(example) and outputs text that tells you whether the switch is active.

Using Switches

By default, Switchboard is set to autocreate switches, which means that a
switch just needs to be checked in code and if it doesn’t exist it will be
created and disabled by default. A switch is always referred to by its key, a
string identifier that should be unique.

A Word on Workflow

The developer can choose whether to take advantage of autocreate or not. There
are two basic workflows. The first, which uses autocreate, is this:

	Write the code first. Reference the switch in the code.

	Test the application in such a way that the code containing the switch is
exercised.

	Refresh the Switchboard admin UI to see the new switch. Modify it as needed.

	If necessary, re-test the application with the proper switch status and/or
condition sets.

The primary advantage of this approach is that there is no chance that the
switch key used in the code will differ from the one in Switchboard, e.g.,
due to a typo. It can also be advantageous, from the perspective of flow [https://en.wikipedia.org/wiki/Flow_(psychology)], to
delay having to exit the code editor until a later time. The disadvantage is
having to exercise code twice: once to create the switch and then again to test
switch behavior.

Eschewing autocreate:

	Create the switch in the admin UI. Modify it as needed.

	Write the code, making sure to use the key of the newly-created switch.

	Test the application.

This approach minimizes time spent putting the application through its paces,
but at the expense of switching between the web browser and the code editor.

Use whatever works.

In Python

To use in Python (views, models, etc.), import the operator singleton
and use the is_active method to see if the switch is on or not:

from switchboard import operator
...
if operator.is_active('foo'):
 ... do something ...
else:
 ... do something else ...

If autocreate is on (and it is by default), the foo switch will be
automatically created and set to disabled the first time it is referenced.
Activating the switch and controlling exactly when the switch is active,
are covered in Managing switches.

In Views

Switchboard has a convenience decorator for when you want to enable/disable an
entire view based on a switch:

from switchboard.decorators import switch_is_active

@switch_is_active('admin_user', redirect_to='/login')
def admin_view():
 # Admin stuff happens here.
 return

If the redirect_to argument is not set and the switch is not active, the
client will get a 404 error.

In Templates

Every templating engine has its own take on how (or even if) logic may be used.
That said, Switchboard provides a helper to make things easier:
switchboard.template_helpers.is_active. This function is just a wrapper
around operator.is_active to make it easier to check a switch. Here are
examples in some of the common Python templating engines.

In Jinja [http://jinja.pocoo.org], the helper can be setup as a test [http://jinja.pocoo.org/docs/dev/templates/#tests] and used like so:

{% if 'foo' is active %}
... do something ...
{% else %}
... do something else ...
{% endif %}

Check the application framework’s documentation for information on how to
setup custom Jinja tests.

In Mako [http://makotemplates.org/], the helper can be imported directly:

<%!
 from switchboard.template_helpers import is_active
%>
...
% if is_active('foo'):
... do something ...
% else:
... do something else ...
% endif

In Javascript

The easiest way to use Switchboard in conjunction with Javascript is to set a
flag within the template code. Using Mako’s syntax in the template:

<%!
 from switchboard import operator
%>
<script>
 window.switches = window.switches || {};
 % if operator.is_active('foo'):
 switches.foo = true;
 % else:
 switches.foo = false;
 % endif
</script>

In the Javascript:

if (switches.foo) {
 ... do something ...
} else {
 ... do something else ...
}

Again, this time using Jinja syntax and the Switchboard-provided “active”
test [http://jinja.pocoo.org/docs/dev/templates/#tests]:

<script>
 window.switches = {};
 switches.foo = {{ 'true' if 'foo' is active else 'false' }};
</script>

Custom Conditions

Switchboard supports custom conditions, allowing application developers to
adapt switches to their particular needs. Creating a condition typically
consists of extending switchboard.conditions.ConditionSet.

An example: if the application needs to activate switches for visitors from a
particular country, a custom condition can do the geo lookup on the IP from
the request and return the country value:

from switchboard.conditions import ConditionSet, Regex
from my_app.geo import country_code_by_addr, client_ip

class GeoConditionSet(ConditionSet):
 countries = Regex()

 def get_namespace(self):
 ''' Namespaces are unique identifiers for each condition set. '''
 return 'geo'

 def get_field_value(self, instance, field_name):
 ''' Should return the expected value for any given field. '''
 if field_name == 'countries':
 return country_code_by_addr(client_ip())

 def get_group_label(self):
 ''' A human-friendly label used in the UI. '''
 return 'Geo'

The first thing in the custom condition is to define the fields that makeup the
condition. In this case, there is one “countries” field, which is a regex,
allowing admins to specify criteria like (US|CA) (US or Canada). Here are the
fields supported by Switchboard:

	switchboard.conditions.Boolean - used for binary, on/off fields

	switchboard.conditions.Choice - used for multiple choice dropdowns

	switchboard.conditions.Range - used for numeric ranges

	switchboard.conditions.Percent - a special type of range specific to
percentages

	switchboard.conditions.String - string matching

	switchboard.conditions.Regex - regex expression matching

	switchboard.conditions.BeforeDate - before a date

	switchboard.conditions.OnOrAfterDate - on or after a date

Once the fields are defined, there are some methods that need to be implemented.
get_namespace and get_group_label are simple functions that return a key and
a UI string respectively. Most of the work happens in the get_field_value
function, which is responsbile for returning the value that is compared against
the user-provided input. Each field type may do the comparison (between the
user-provided input and what’s returned by get_field_value) in a different
way; in this case, it’s a regex search.

When an admin sets up a Geo condition set and sets the countries field to
“US|CA”, that input is compared against the country code returned by
get_field_value. If they match, then the switch passes that particular
condition.

Context Objects

Every switch is evaluated (to see if it is active or not) within a particular
context. By default, that context includes the request object, which allows
Switchboard to specify conditions such as: “make this switch active only for
requests with foo in the query string.” That said, there may be other
objects that would be handy to have available in the context. For example, in
an e-commerce setting, the Product model may have a new flag. By passing
the model into the is_active method, Switchboard can now activate
switches based on that flag:

if operator.is_active('foo', my_product):

Any objects passed into the is_active method after the switch’s key will be
added to the context. Normally when dealing with context objects, a custom
condition will be required to actually evaluate the switch against that object.

Testing switches

Switchboard provides a decorator that makes it easy to turn a switch on or off
for a particular unit test:

from switchboard import operator
from switchboard.testutils import switches

@switches(my_switch=True)
def test_my_switch:
 assert operator.is_active('my_switch')

Managing switches

Switches are managed in the admin UI, which is located at the
SWITCHBOARD_ROOT within the application. The admin UI allows:

	Viewing and searching all switches.

	Reviewing or auditing a switch’s history.

	Adding, editing, and removing switches.

	Controlling a switch’s status.

	Setting up condition sets for a switch.

Of all these capabilities, the last two are of the most interest, as the status
and condition sets determine whether a switch is active.

Statuses

There are four statuses:

	Inactive - disabled for everyone

	Selective - active only for matched conditions

	Inherit - inherit from the parent switch

	Global - active for everyone

Inactive and global are opposite extremes: the switch is turned on or
off for everyone. The inherit status is used for Parent-child switches. The
selective status means that the switch is only active if it passes the
condition sets.

By default, a switch will be created and set to the inactive status. Typical
workflow would be to put code using a switch into production. The corresponding
switch will be autocreated the first time the code containing it is executed,
thus visible in the admin UI. Once visible, the admin can set any desired
conditions before finally activating the switch by setting it to the proper
status.

Condition Sets

When a switch is in selective status, Switchboard checks the
conditions within the condition set to see if the switch should
be active. Conditions are criteria such as “10% of all visitors” or
“only logged in users” that can be applied to the request to see if the
switch should be active. When a switch is in selective status, it will
only be active if it meets the conditions in place.

Parent-child switches

Switchboard allows a switch to inherit conditions from a parent, which can be
useful when multiple switches need to share a common condition set. To setup
parent-child relationship, simply prefix the switch with the parent’s key,
using a colon ‘:’ as the separator. The parent-child relationships can be as
deep as needed, e.g., grandparent:parent:child.

A real world example: using Switchboard to conduct an AB test. AB tests
have two gates: the first are the visitors who are part of the test, and the
second is to determine who sees which variant. In this example, 10% of site
traffic should be in the test, with half (i.e., 5% of traffic) seeing the normal
(control) A variant and the other half seeing the B variant. The test is setup
with two switches:

	abtest

	abtest:B

The abtest switch has a “0-10% of traffic” condition set. The abtest:B
switch will inherit from abtest and can add its own “0-5% of traffic”
condition. Half of those in the test will see the B variant, the rest will see
the control A variant. The abtest:B switch’s status should be set
to selective, for reasons noted below.

Note that an additional tool, like Google Analytics Content Experiments [https://support.google.com/analytics/answer/1745147?hl=en], is
still needed to measure conversion within each variant, but Switchboard can
handle traffic segmentation.

Two potential spots of confusion:

	Child switches always inherit from their parents, even when the child
switch’s status is set to something other than inherit. An inherit status
just means the child switch isn’t adding to the parent switch’s status.

	It is also important to note that when a parent switch is disabled, it takes
precedence over the statuses of any child switches. On the other hand, if the
parent switch is enabled, it can be overriden by the child switch, e.g., if
the parent has a global status but the child has an inactive status, the
child’s inactive wins out.

 Copyright 2015, Kyle Adams.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Switchboard 1.2.1 documentation

Index

 Copyright 2015, Kyle Adams.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Switchboard 1.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Kyle Adams.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

